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SUMMARY

An alternative characteristic-based scheme, the two-step Taylor-characteristic-based Galerkin method is
developed based on the introduction of multi-step temporal Taylor series expansion up to second order
along the characteristic of the momentum equation. Contrary to the classical characteristic-based split
(CBS) method, the current characteristic-based method does not require splitting the momentum equation,
and segregate the calculation of the pressure from that of the velocity by using the momentum–pressure
Poisson equation method. Some benchmark problems are used to examine the effectiveness of the proposed
algorithm and to compare with the original CBS method, and the results show that the proposed method
has preferable accuracy with less numerical dissipation.

We further applied the method to the numerical simulation of flow around equilateral triangular cylinder
with different incidence angles in free stream. In this numerical investigation, the flow simulations are
carried out in the low Reynolds number range. Instantaneous streamlines around the cylinder are used as
a means to visualize the wake region behind, and they clearly show the flow pattern around the cylinder
in time. The influence of incidence angle on flow characteristic parameters such as Strouhal number, Drag
and Lift coefficients are discussed quantitatively. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In FEM, as well as in FDM and FVM, it is well known that the numerical solution of incompress-
ible fluid dynamic problems with the conventional Galerkin method leads to spurious oscillatory
due to two main sources. The first source is due to the convective character of the governing
equations, which induces spurious oscillations primarily in the velocity field, particularly in the
convection-dominated flows. The second source of instability is due to the mixed character of the
incompressible Navier–Stokes equations, which induces oscillations primarily in the pressure field,
as using inappropriate interpolation functions to approximate the velocity and pressure.

In order to overcome these instabilities, various stabilized finite element formulations have been
developed in the past decades. To circumvent the restriction imposed by the LBB condition, the
algorithms such as the pressure-stabilized Petrov–Galerkin (PSPG) formulation [1, 2], Galerkin
least-square techniques (GLS) [3] and the finite increment calculus (FIC) [4] have been found to
be among the most powerful tools. The formulation of PSPG method is achieved by adding to
the Galerkin formulation of incompressible constraint equation a series of integrals of the residual
of the momentum equation over element domains, while the procedures based on GLS work by
introducing a Laplacian of pressure term in the mass balance equation. In the FIC procedure,
application of classical Galerkin method to the modified differential equations for momentum and
mass balance, which incorporate naturally the necessary stabilization terms, leads to a stabilized
discrete system of equations. Recently, Codina and Blasco [5] have presented a new stabilized
formulation for the transient incompressible N–S equations. The main idea of them is to introduce
the projection gradient on the velocity space and to add to the continuity equation the difference
between the Laplacian of the pressure and the divergence of this new unknown vector.

Strategies to cope with the convective effects arising in convection-dominated flows have
also been extensively investigated in the last decades, such as the streamline–upwind/Galerkin
method [6], space–time Galerkin/least-square method [7], subgrid scale method [8] and the Taylor–
Galerkin method [9]. All these methods suppress spurious oscillations efficiently, by adding a
stabilizing term to the original Galerkin formulation of the governing equation of the problem.
The introduction of the characteristic Galerkin (CG) method of dealing with convection-dominated
problems, originally presented in [10], contributes to discretize the particle time derivatives along
the characteristic instead of the spatial time derivative, such that the convective terms disappear
and the problem is that of simple diffusion for which the standard Galerkin approximation is
optimal in the energy norm sense. In order to avoid the difficulties of complex programming and
time consuming, which is arising in the original CG method, Zienkiewicz and Codina [11] derived
an alternative version of the CG method by using a local Taylor expansion to approximate the
unknown along the characteristics and also extended the split, which follows the process initially
introduced by Chorin [12] and Témam [13], to the CG procedure, and that results in the well-known
characteristic-based split (CBS) algorithm widely used in solution of the Navier-Stokes equation.

Since the introduction by Zienkiewicz and Codina, rapid progress is observed in the development
of the CBS method in recent years [11, 14–25]. Simultaneously, the CBS scheme and its extension
have been applied widely for the solution of fluid and solid dynamic problems encountered
in engineering, including general compressible and incompressible flows [22, 26–30], turbulent
flows [18, 31], shallow-water flows [14, 32], thermal flows [33, 34], porous medium flows [35–38],
viscoelastic flows [39], solid dynamics [40] and bulk metal forming [41]. However, the application
of the CBS algorithm to the flow over triangular cylinder with different incidences, which has
fundamental fluid mechanics interest with respect to many technical applications, is not yet found
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in the existing literature, and that motivates us to numerically simulate this problem by using the
characteristic-based method.

In terms of computational cost, as pressure segregation method, the fractional step schemes
as well as other techniques based on the solution of a pressure Poisson equation and predictor–
multicorrector algorithms are more attractive, since in these methods the computations of the
velocity and the pressure are decoupled and then only scalar equations are need to be solved [42].
On the other hand, it was concluded by Guermond and Quartapelle [43] that to avoid the LBB
condition in the fractional step algorithm with the same order interpolation approximations for
velocity and pressure, only the non-incremental version (first order in time) of the algorithm
can be used with the time step size larger than a critical one. By this reason, the splitting error
introduced in the CBS method effects the overall accuracy and causes the temporal accuracy of
the method to be of first order. For eliminating the first-order error in time caused by the split,
Nithiarasu and Zienkiewicz [23] have proposed the explicit and matrix-free CBS schemes that
have been proved, via some examples of benchmark flow problem, to be of second-order accuracy
in time and approximate second order in spatial dimensions on unstructured meshes, and have
also introduced the pressure stabilization technique into the proposed scheme so that the spurious
pressure oscillation is alleviated obviously.

In this paper, an alternative version of the characteristic-based algorithm is proposed for finite
element solutions of incompressible Navier–Stokes equations. The two-step second-order Taylor
expansion is used in the time discretization of the transient convection–diffusion equation along
its characteristic and, then, we extend the scheme to the Navier–Stokes equations and obtain the
two-step Taylor-characteristic-based Galerkin scheme, abbreviated as the TCBG in the remainder
of this paper. The segregation of the pressure calculation is implemented by solving the pressure
Poisson equation, which is obtained by taking the divergence on both sides of the Crank–Nicolson
formulation of the semi-discretized momentum equations, associated with the introduction of the
incompressible constraint of the current time step. The key properties of the two-step TCBG
scheme are that it is free from the splitting error, which will arise in the classical CBS method, and
its second-order accuracy in time, and as in the classical CBS method, the same order interpolation
for the velocity and pressure approximation can be used in the proposed scheme with no need for
stabilization of pressure.

The organization of the paper is as follows. After describing the governing equations and the
CBS scheme for incompressible flow in the next section, we present in detail the two-step TCBG
scheme in Section 3. In Section 4, we validate and compare the approach with the CBS scheme
through the numerical simulations of some benchmark problems. Section 5 is devoted to the
application of the developed method to the numerical analysis of flow past triangular cylinder
at different incidence angles. The influence of incidence angle on flow pattern around triangular
cylinder and some characteristic flow parameters such as Drag and Lift coefficients and Strouhal
number is also discussed. Section 6 concludes the paper with some conclusions.

2. GOVERNING EQUATIONS AND THE CBS SCHEME

2.1. Governing equations for incompressible viscous flow

The governing equations of unsteady incompressible viscous fluid flow can be expressed by
the Navier–Stokes equations and continuity equation and written in the Eulerian form as
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follows:

�

(
�ui
�t

+u j
�ui
�x j

)
=− �p

�xi
+ ��i j

�x j
in �×[0,T ] (1)

�ui
�xi

=0 in �×[0,T ] (2)

where � and [0,T ] are the spatial and temporal domains, ui is the i-component velocity, t is time,
� is the fluid density, p is the pressure. The deviatoric stresses are linked to the strain rates and
given by

�i j =2�ε̇i j =�

(
�ui
�x j

+ �u j

�xi

)
(3)

where � is the viscosity constant.
Using the following non-dimensionalized variables:

u∗
i =ui/U∞, x∗

i = xi/D, t∗ = tU∞/D, �∗ =�/�∞, p∗ = p/�∞U 2∞, Re=U∞D/v (4)

where D is a characteristic length, U∞ is a characteristic velocity, �∞ is characteristic density and
Re is the Reynolds number, v is kinematic viscosity equal to �/�, the non-dimensionalized form
of Equations (1) and (2) can be written as

�u∗
i

�t∗
+u∗

j
�u∗

i

�x∗
j

=−�p∗

�x∗
i

+ 1

Re

��∗
i j

�x∗
j

(5)

�u∗
i

�x∗
i

=0 (6)

where

�∗
i j =

�u∗
i

�x∗
j

+ �u∗
j

�x∗
i

Dropping the asterisk from the non-dimensional variables for brevity, the non-dimensional equa-
tions for (1) and (2) can be rewritten as

�ui
�t

+u j
�ui
�x j

=− �p
�xi

+ 1

Re

��i j
�x j

(7)

�ui
�xi

=0 (8)

The problem definition is completed by prescribing appropriate initial and boundary conditions.

2.2. The CBS scheme

In this subsection, we only give the essential steps of the CBS algorithm. The spatial Galerkin
discretization procedure can be found in the classical reference of Zienkiewicz and Taylor [44],
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and is not described here. For every time increment �t , the semi-implicit form of the CBS method
for solving the governing equations perform in the following three steps:

(1) Solving the intermediate momentum equations

u∗
i =uni −�t

(
unj

�uni
�x j

− 1

Re

��ni j
�x j

)
+ �t2

2
unk

�
�xk

(
unj

�uni
�x j

− 1

Re

��ni j
�x j

)
(9)

(2) Calculating the pressure from the Poisson equation

�2 pn+1

�xi�xi
= 1

�t

�u∗
i

�xi
(10)

(3) Performing velocity correction

un+1
i =u∗

i −�t
�pn+1

�xi
+ �t2

2
unk

�
�xk

(
�pn

�xi

)
(11)

where u∗
i represents the auxiliary velocity.

3. TWO-STEP TCBG SCHEME

We first consider the time discretization of one-dimensional convective–diffusive equation, which
is written as

��

�t
+U

��

�x
− �

�x

(
k
��

�x

)
+Q=0 (12)

In the above equation � is a concentration being transported by the velocity U in a convective
manner or by diffusion action, k is the diffusion coefficient, the term Q represents any external
sources of the quantity �. Making a Taylor expansion in time to second-order accuracy, the
formulation of the above Equation (12) along the characteristic in two steps can be written as

�n+1/2 = �n|x−�1/2+ �t

2

(
�
�x

(
k
��

�x

)
−Q

)n∣∣∣∣
x−�1/2

�n+1 = �n|x−�2 + �t

(
�
�x

(
k
��

�x

)
−Q

)n+1/2
∣∣∣∣∣
x−�2/2

(13)

where �1 and �2 are the distances traveled, during time interval of �t , by the particles X1 and X2
along the x-axis at average velocity Ū1 and Ū2, respectively (see Figure 1), and are calculated by

�1=Ū1�t, �2=Ū2�t (14)

where the approximations for the average velocity of the particles along characteristics are given
as follows:

Ū1= Un+1/2+Un|x−�1/2

2
, Ū2=Un+1/2|x−�2/2 (15)
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Figure 1. Two-step temporal discretization along the characteristics (two particles X1 and X2
and their corresponding trajectories).

with

Un+1/2=Un+O(�t) (16)

In order to circumvent the difficulty of mesh updating, which arises in the original characteristic-
based method, using the Taylor expansion we have the following:

�n|x−�1/2=�n− �1
2

��n

�x
+�21

8

�2�n

�x2
+O(�t3), �n|x−�2=�n−�2

��n

�x
+�22

2

�2�n

�x2
+O(�t3) (17)

Un|x−�1/2 = Un−Un �t

2

�Un

�x
+O(�t2)
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2

�Un+1/2

�x
+O(�t2)

(18)
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(
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2

�
�x

(
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(
k
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)
−Q

)n

+O(�t2)

(
�
�x

(
k
��

�x

)
−Q

)n+1/2
∣∣∣∣∣
x−�2/2

=
(

�
�x

(
k
��

�x

)
−Q

)n+1/2

−�2
2

�
�x

(
�
�x

(
k
��

�x

)
−Q

)n+1/2

+O(�t2) (19)

Making use of Equations (14)–(19) and neglecting higher-order terms, the Equation (13) can be
rewritten by

�n+1/2 = �n− �t

2

(
Un ��n

�x
− �

�x

(
k
��n

�x

)
+Qn

)

+�t2

8
Un �

�x

(
Un ��n

�x
−2

(
�
�x

(
k
��n

�x

)
−Qn

))
(20)
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�n+1 = �n−�t

(
Un+1/2 ��n

�x
− �

�x

(
k
��n+1/2

�x

)
+Qn+1/2

)

+�t2

2
Un+1/2 �

�x

(
Un+1/2 ��n

�x
− �

�x

(
k
��n+1/2

�x

)
+Qn+1/2

)
(21)

We can easily make extension of the procedures described above to vector variables, and then
obtain the final forms of the two-step Taylor-characteristic-based scheme for the convective–
diffusive equation, which can be expressed as

�n+1/2 = �n− �t

2

(
Un

j
��n

�x j
− �

�xi

(
k
��n

�xi

)
+Qn

)

+�t2

8
Un
k

�
�xk

(
Un

j
��n

�x j
−2

(
�

�xi

(
k
��n

�xi

)
−Qn

))
(22)

�n+1 = �n−�t

(
Un+1/2

j
��n

�x j
− �

�xi

(
k
��n+1/2

�xi

)
+Qn+1/2

)

+�t2

2
Un+1/2
k

�
�xk

(
Un+1/2

j
��n

�x j
− �

�xi

(
k
��n+1/2

�xi

)
+Qn+1/2

)
(23)

Applying the described method to the momentum equations, we yield the following scheme:

un+1/2
i = uni − �t

2

(
unj

�uni
�x j

+ �pn+�

�xi
− 1

Re

��ni j
�x j

)

+�t2

8
unk

�
�xk

(
unj

�uni
�x j

+2

(
�pn+�

�xi
− 1

Re

��ni j
�x j

))
(24)

un+1
i = uni −�t

⎛
⎝un+1/2

j

�uni
�x j

+ �pn+�

�xi
− 1

Re

��n+1/2
i j

�x j

⎞
⎠

+�t2

2
un+1/2
k

�
�xk

⎛
⎝un+1/2

j

�uni
�x j

+ �pn+�

�xi
− 1

Re

��n+1/2
i j

�x j

⎞
⎠ (25)

where �∈[0, 1] with �=0 for explicit forms, 0<�<1 for semi-explicit forms and �=1 for fully
implicit forms, and particularly; we set �=0 and �=1 in Equations (24) and (25), respectively.
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The spatial discretization of Equations (24) and (25) is performed by using the standard Galerkin
procedure after the temporal discretization. The primitive unknown variables, ui and p, are spatially
approximated by the Galerkin finite element shape functions of the same order as

ui =∑
I

�I ui I , p=∑
I

�I pI (26)

in which ui I , pI are nodal quantities, the subscript I represents an element node and �I the nodal
shape function at node I .

Multiplying the semi-discrete equations by weighting functions and integrating over computa-
tional domain, the resulting finite element algebraic equations can be expressed as follows:

MI J
un+1/2
i J −uni J

�t/2
=−Nn

I J u
n
i J −Sni I −Gi I J p

n
J − �t

4
(Cn

I J u
n
i J +2Fn

i I J p
n
J )+Ln

i I (27)

MI J
un+1
i J −uni J

�t
= −Nn+1/2

I J uni J −Sn+1/2
i I −Gi I J p

n+1
J

−�t

2
(Cn+1/2

I J uni J +Fn+1/2
i I J pn+1

J )+Ln+1/2
i I (28)

As we use linear finite element shape functions, the higher-order terms are neglected in the
above equations. The elemental matrices and vectors arising in Equations (27)–(28) are given as
follows:

MI J =
∫

�e
�I�J d�, Gi I J =

∫
�e

�I
��J

�xi
d�

Nn+�
I J =

∫
�e

�I u
n+�
j

��J

�x j
d�, Fn+�

i I J =
∫

�e

��I

�xk
un+�
k

��J

�xi
d�

Sn+�
i I = 1

Re

∫
�e

��I

�x j

(
�un+�

i

�x j
+ �un+�

j

�xi

)
d�, Cn+�

I J =
∫

�e

��I

�xk
un+�
k un+�

j
��J

�x j
d�

Ln+�
i I = 1

Re

∫
�e

�I

(
�un+�

i

�x j
+ �un+�

j

�xi

)
n j d�

(29)

where �=0, 1
2 , and we denote node indices with subscripts I , J , space indices with subscripts i ,

j , k, and a repeated index means summation.
Before the calculation of Equation (28), the pressure at the n+1 time step has to be solved for

a given velocity at the previous time step, and then it is necessary to derive the pressure Poisson
equation equivalent to the continuity equation. The pressure Poisson equation is obtained by taking
the divergence of the semi-discrete Crank–Nicolson scheme of the momentum equation and is
written as

�2 pn+1

�xi�xi
= 1

�t

�
�xi

(uni −un+1
i )− �

�xi

⎛
⎝un+1/2

j

�un+1/2
i

�x j
− 1

Re

��n+1/2
i j

�x j

⎞
⎠ (30)
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and applying the incompressibility condition at the n+1 time level leads to the following equation:

�2 pn+1

�xi�xi
= 1

�t

�uni
�xi

− �
�xi

⎛
⎝un+1/2

j

�un+1/2
i

�x j
− 1

Re

��n+1/2
i j

�x j

⎞
⎠ (31)

By using the Galerkin approximation, the weak formulation of the Equation (31) is obtained as

∫
�

��

�x j

�pn+1

�x j
d� = − 1

�t

∫
�

�
�uni
�xi

d�−
∫

�

��

�xi

⎛
⎝un+1/2

j

�un+1/2
i

�x j
− 1

Re

��n+1/2
i j

�x j

⎞
⎠ d�

+
∫

�
�

⎛
⎝un+1/2

j

�un+1/2
i

�x j
− 1

Re

��n+1/2
i j

�x j
+ �pn+1

�xi

⎞
⎠ni d� (32)

Making use of Equation (30), the boundary integration part in the right-hand side of Equation (32)
can be expressed as

∫
�

�

⎛
⎝un+1/2

j

�un+1/2
i

�x j
− 1

Re

��n+1/2
i j

�x j
+ �pn+1

�xi

⎞
⎠ni d�= 1

�t

∫
�

�(uni −un+1
i )ni d� (33)

Substituting Equation (33) into (32), we can yield

∫
�

��

�x j

�pn+1

�x j
d� = − 1

�t

∫
�

�
�uni
�xi

d�−
∫

�

��

�xi

⎛
⎝un+1/2

j

�un+1/2
i

�x j
− 1

Re

��n+1/2
i j

�x j

⎞
⎠ d�

+ 1

�t

∫
�

�(uni −un+1
i )ni d� (34)

For most cases, the value of un+1
i over the outlet boundary is assumed to be unknown; for this

reason, we can approximate un+1
i by 2un+1/2

i −uni .
Further, the final finite element formulation of the pressure Poisson equation in the matrix vector

form can be written as

HI J p
n+1
J =−Qi I J u

n
i J −Ri I J u

n+1/2
i J +PI (35)

where the elemental matrices and vector are defined by

HI J =
∫

�e

��I

�xi

��J

�xi
d�, PI = 2

�t

∫
�e

�I (u
n
i −un+1/2

i )ni d�

Qi I J = 1

�t

∫
�e

�I
��J

�xi
d�, Ri I J =

∫
�e

��I

�xi
un+1/2
j

��J

�x j
d�

(36)

Now, the solution procedure of TCBG method for governing equations may be summarized as
follows:

(1) Solve Equation (27) explicitly for velocity field at n+1/2 time step un+1/2
i ;

(2) Calculate pressure field pn+1 from the Poisson-type equation (35);
(3) Use Equation (28) to determine un+1

i once un+1/2
i and pn+1 are known.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1181–1208
DOI: 10.1002/fld



1190 Y. BAO, D. ZHOU AND Y.-J. ZHAO

4. NUMERICAL VALIDATION AND COMPARISON OF THE TWO-STEP TCBG SCHEME

In this section, we apply the proposed method to numerically simulate some incompressible flow
test cases and compare the results with the one obtained by using the CBS method. The tests
include incompressible flow inside a lid-driven square cavity at Re=1000, 5000 and unsteady
flow past circular cylinder at Re=100. In the following simulations, we have used equal-order
velocity–pressure interpolation, particularly, for the cavity flow the bilinear quadrilateral element
with structured mesh is used, while the linear triangular element with unstructured mesh is used
for the computation of flow past cylinder problem.

4.1. Lid-driven cavity flow

The first example we consider is the classical cavity flow problem. The computational domain
is the unit square, the enforced boundary conditions for the velocities and the pressure are as
follows: the velocities are fixed to zero everywhere on boundaries except on the top of it, where
the x- and y-velocity are prescribed to 1 and 0, respectively, and the pressure at the left bottom
corner is prescribed to 0. For Re=1000, the uniform grids with 21×21, 41×41 nodal points and
globally distorted mesh (see Figure 2) with 40×40 elements are used, and for Re=5000, two
non-uniform meshes (refined near the boundaries) of 41×41 and 81×81 nodal points are used for
the computation. To determine the accuracy of the schemes, we compare the numerical results with
the reference data that are obtained by using the code developed for solution of two-dimensional
steady incompressible flow by Erturk et al. with a fine uniform grid mesh of 256×256 (see [45]).

The streamline and pressure patterns for Re=5000 obtained with mesh 81×81 and the TCBG
are shown in Figure 3. The comparisons of x-velocity profiles along the cavity mid-section x=0.5
for Re=1000 and Re=5000 are shown in Figures 4 and 5, respectively. It is observed from these

Figure 2. The computational mesh with global distortion (40×40 elements).
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Figure 3. Streamline contour and pressure pattern for the driven cavity flow at Re=5000 using the
structured non-uniform mesh of 81×81 and the TCBG method.

figures that both schemes can result in good accuracy, especially for more fine meshes. It can be
also observed from the results that the profiles obtained by the TCBG method are more close to
the reference one than those obtained by the CBS.

The convergence behavior of the CBS and TCBG method to the steady states for Re=1000
using different time step sizes is also shown in Figure 6. The steady-state convergence criteria
(<10−6) is based on the L2 norm residual of the velocity normalized by the norm of the velocity
at the current time step, and is expressed by

√
No. of nodes∑

i=1
(|u|n+1

i −|u|ni )2
/√

No. of nodes∑
i=1

(|u|n+1
i )2 (37)

It is observed that both CBS and TCBG display good behavior when using smaller time step
size �t equal to 0.01. However, at �t=0.02, CBS fails to reach the prescribed residual tolerance,
whereas TCBG reaches the tolerance faster than that when using smaller time step of 0.01. The
comparison of the results obtained using different schemes may indicate that the proposed method
performs better than the CBS method, in this problem.

4.2. Flow past a circular cylinder

In the second example, we solve the benchmark problem of flow over a cylinder. The circular
cylinder is of unit diameter and is placed in the region �=[−4.0,12.0]×[−4.0,4.0]. The center
of the cylinder lies at the origin of Cartesian system, so that the inflow boundary is located 4.0
in front of the center of the cylinder and the outflow boundary 12.0 downstream of the center of
the cylinder. The top and bottom boundaries are located 4.0 above and below the center of the
cylinder. The boundary conditions are as below: at the inflow, the x- and y-velocity are described
to 1 and 0, whereas at top and bottom boundaries the y-velocity component is prescribed to 0
and the x-component is left to free. At the outflow, both the x- and y-components are free. The
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Figure 4. Velocity profiles along vertical section for a cavity flow at Re=1000 with different meshes and
time step sizes. Closed view of the stationary point of the velocity is shown in the inset: (a) uniform mesh
21×21 (�t=0.04); (b) uniform mesh 41×41 (�t=0.02); and (c) distorted mesh 41×41 (�t=0.01).

no-slip boundary condition is assumed on the cylinder surface. The Reynolds number based on
the cylinder diameter and the free-stream velocity is 100.

Simulations have been performed on two finite element mesh systems, The first coarse mesh 1
consists of 2076 nodal points and 3972 elements, whereas the second fine mesh 2 consists of
9228 nodal points and 18 056 elements, both being refined while approaching the cylinder. The
corresponding time step sizes for meshes 1 and 2 are 0.04 and 0.01, respectively.

Figure 7 shows computed x-component velocity contour and the pressure pattern using the
second fine mesh and the TCBG method. The comparison of temporal evolution of y-component
velocity at the midpoint of the outflow side, using the CBS and the TCBG method, is shown in
Figure 8. It is observed from Figure 8(a) that the CBS method is slightly more dissipative than
the TCBG method, with smaller frequency and amplitude, when using the coarse mesh 1 with
larger time step size. However, in Figure 8(b), both results of CBS and TCBG become very similar
for the fine mesh 2 with smaller time step size. This example serves as an evidence to demonstrate
that even though both methods are accurate and suitable for the solution of incompressible flow,
the TCBG method is more preferable for its less dissipative character when using larger time step
size and coarse mesh grids.
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Figure 5. Velocity profiles along vertical section for a cavity flow at Re=5000 using different meshes and
time step sizes. Closed view of the stationary point of the velocity is shown in the inset: (a) non-uniform

mesh 41×41 (�t=0.01) and (b) non-uniform mesh 81×81 (�t=0.003).
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Figure 6. Convergence to the steady state for the lid-driven cavity flow at Re=1000 using uniform mesh
of 41×41 nodal points and different time step sizes: (a) �t=0.01 and (b) �t=0.02.

5. NUMERICAL APPLICATION ON THE FLOW PAST TRIANGULAR CYLINDER
AT DIFFERENT INCIDENCE ANGLES

5.1. Statement of the problem

In this section, the developed two-step TCBG method is applied to perform numerical simulation
of flow past equilateral triangular cylinder placed at different incidences (0◦���60◦, ��=7.5◦).
The geometry of flow domain and boundary conditions are shown in Figure 9. The origin of the
Cartesian system is located at the center point of cylinder. The cylinder is of unit side length and
is placed in a rectangular computational domain whose upstream boundary is located at 13.1 side
length from the center of the cylinder. The top and bottom of the domain are located at 15 side
length from the center of the cylinder, such that we can impose free-stream boundary conditions
at the top and bottom boundaries without noticeably affecting the solution. The downstream
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Figure 7. Contours of x-component velocity and pressure for the flow over a cylinder at Re=100 using the
TCBG method and the mesh consist of 18 056 triangle elements, with 9228 nodal points: (a) x-component

velocity contour and (b) the pressure contour.

boundary is located at 25.5 side length from the center of the cylinder. The corresponding boundary
conditions used in the present simulations are briefly mentioned here. At the inflow, top and bottom
boundaries, the free-stream velocity U∞ is specified to be unity and the vertical-component of
the velocity is set to zero. The no-slip boundary condition is specified for the velocity on the
cylinder surface. Pressure boundary condition is of Dirichlet type at the outflow boundary, p=0.
The time marching calculations were started with the fluid at rest and the free-stream velocity is
gradually increased in time from zero to unity, according to a hyperbolic tangent distribution, i.e.
U∞(t)= tanh(t).

5.2. Definition of flow parameters

Some flow parameters that are used to characterize flow behavior such as Drag and Lift coefficients
and Strouhal number are defined as follows.

5.2.1. Drag and Lift coefficients. The non-dimensional Drag and Lift coefficients of the cylinder
are defined by

CD= 2FD
�U∞D

, CL= 2FL
�U∞D

(38)
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Figure 8. Temporal evolution of the y-velocity component at the point
(12.0, 0.0): (a) using mesh 1 and (b) using mesh 2.

where FD and FL are respectively the Drag and Lift forces acting on the cylinder; the characteristic
length D is taken to be the side length of the triangle.

5.2.2. Strouhal number. The dimensionless parameter, Strouhal number, is used to describe the
frequency of the flow in the wake region and defined here as

St= fsD/U∞ (39)

where fs is the vortex shedding frequency and computed from the periodic time variation of the
Lift coefficient. Since U∞ and D are non-dimensionalized to be of unity for all cases examined,
the Strouhal number is equivalent to the shedding frequency.
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Figure 9. Flow past the equilateral triangular cylinder at different angles to the direction of flow:
(a) computational domain and boundary conditions and (b) definition of incidence angle �, where the
alpha angle is defined as the angle between the vector OA and the free-stream direction, and the point O

is the central point of the cylinder, the point A is the vertex of the cylinder.

5.3. Numerical results and discussions

In this subsection, the numerical investigations of flow past an equilateral cylinder with different
incidences are performed at Re=100 and 150. The Reynolds number is based on the free-stream
velocity and the side of triangular cylinder. The mesh systems used for computation are illustrated
in Figure 10 in close view. The number of nodes that are uniformly distributed over one unit length
of a cylinder surface is to be 61 for all cases. Through a number of grid refinement studies, we
consider that the grid systems for the calculations can result in satisfactory accurate solutions.

5.3.1. Flow pattern. As the flow becomes unsteady at Reynolds number up to 100, we visualize
the flow field around the cylinder by the help of instantaneous streamlines for seven successive
moments of time that span over a complete cycle of vortex shedding. As shown at the left side in
Figures 11–15, the plots are for the cases of �=0◦,15◦,30◦,45◦, 60◦. The sequence of streamlines
clearly described the process of vortices formation and shedding from a triangular cylinder at
different incidence angles. From these figures, we can observe that two critical points of streamline
patterns described by Perry et al. [46], namely, the saddle and center are simultaneously born
behind the cylinder, then moved to downstream, approached to each other and finally disappeared
in the wake before a new vortex is shed. As further seen by the comparison of these figures, the
variety in angle of incidence has significant influence on the flow pattern near the cylinder. In the
case of �=0◦ (Re=100) with only one side facing the flow, at the reference time t= t0, the larger
and smaller vortices originally formed respectively from the upper and lower side of the cylinder,
with the smaller is located near the rear corner of the cylinder. At time t= t0+1/6T , these two
counter-rotating vortices combined into a more larger one, and another new vortex appeared at
the front lower corner of the cylinder, simultaneously. From t0+2/6T to t0+3/6T , the combined
vortex is separated from the cylinder and shed in the wake; at the same time, the vortex located
at the lower side is growing gradually with the newly emerged vortex at the rear corner of the
cylinder. The flow patterns shown in left plots of Figure 11(a) and (d), which are symmetric to
each other about the stream centerline, indicate that t0+3/6T is the starting point of the second
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Figure 10. View of close-up mesh: (a) 26 949 nodes and 53 468 elements, �=0◦; (b) 27 101 nodes and
53 772 elements, �=7.5◦; (c) 26 868 nodes and 53 306 elements, �=15◦; (d) 27 408 nodes and 54 386
elements, �=22.5◦; (e) 27 265 nodes and 54 100 elements, �=30◦; (f ) 27 488 nodes and 54 546 elements,
�=37.5◦; (g) 26 945 nodes and 53 459 elements, �=45◦; (h) 27 537 nodes and 54 644 elements, �=52.5◦;

and (i) 27 607 nodes and 54 784 elements, �=60◦.

half period time. In this time period, from t0+3/6T to t0+T , a symmetric flow pattern to the
first half period around the cylinder is observed clearly. From Figure 11(g), we can see that the
next new cycle of vortex shedding begins at t= t0+T , since the flow pattern exactly repeated
them at t= t0. It is observed from Figure 12 that, in the case of �=15◦, the most different feature
from the above case is that the vortex born in the second half period is no longer symmetry to
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Figure 11. Time histories of streamlines behind a triangular cylinder with incidence angle of 0◦ at Re=100
(left) and Re=150 (right) for seven successive moments of time over a period of vortex shedding. t0 is
a reference dimensionless time, and for Re=100, 150, T is different period time calculated from Lift
coefficient time history: (a) t= t0; (b) t= t0+1/6T ; (c) t= t0+2/6T ; (d) t= t0+3/6T ; (e) t= t0+4/6T ;

(f ) t= t0+5/6T ; and (g) t= t0+T .
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Figure 12. Time histories of streamlines behind a triangular cylinder with incidence angle of 15◦ at
Re=100 (left) and Re=150 (right) for seven successive moments of time over a period of vortex shedding.
t0 is a reference dimensionless time, and for Re=100, 150, T is different period time calculated from Lift
coefficient time history: (a) t= t0; (b) t= t0+1/6T ; (c) t= t0+2/6T ; (d) t= t0+3/6T ; (e) t= t0+4/6T ;

(f ) t= t0+5/6T ; and (g) t= t0+T .
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Figure 13. Time histories of streamlines behind a triangular cylinder with incidence angle of 30◦
at Re=100 (left) and Re=150 (right) for seven successive moments of time over a period of
vortex shedding. t0 is a reference dimensionless time, and for Re=100, 150, T is different period
time calculated from Lift coefficient time history: (a) t= t0; (b) t= t0+1/6T ; (c) t= t0+2/6T ;

(d) t= t0+3/6T ; (e) t= t0+4/6T ; (f ) t= t0+5/6T ; and (g) t= t0+T .
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Figure 14. Time histories of streamlines behind a triangular cylinder with incidence angle of 45◦
at Re=100 (left) and Re=150 (right) for seven successive moments of time over a period of
vortex shedding. t0 is a reference dimensionless time, and for Re=100, 150, T is different period
time calculated from Lift coefficient time history: (a) t= t0; (b) t= t0+1/6T ; (c) t= t0+2/6T ;

(d) t= t0+3/6T ; (e) t= t0+4/6T ; (f ) t= t0+5/6T ; and (g) t= t0+T .
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Figure 15. Time histories of streamlines behind a triangular cylinder with incidence angle of 60◦
at Re=100 (left) and Re=150 (right) for seven successive moments of time over a period of
vortex shedding. t0 is a reference dimensionless time, and for Re=100, 150, T is different period
time calculated from Lift coefficient time history: (a) t= t0; (b) t= t0+1/6T ; (c) t= t0+2/6T ;

(d) t= t0+3/6T ; (e) t= t0+4/6T ; (f ) t= t0+5/6T ; and (g) t= t0+T .
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the vortex in the first half period, due to the non-symmetric incidence of cylinder in the flow.
We also found, for �=15◦ at Re=100, the two vortices of different shape and size formed at the
upper and lower side of cylinder, and shed into the wake alternately. In the case of �=60◦, the
cylinder is placed such that its two sides face the free stream and its position is symmetric about
the direction of the stream, as shown in Figure 15. From Figure 15, we can see that the flow
pattern is clearly different from those in the previous cases. Owing to its streamlined shape, two
vortices are always generated at the rear-end corners of the cylinder, and shed alternately in the
wake, and during the first and second half period time, the flow pattern is symmetry to each other
about the stream centerline, as found for �=0◦. The same features of vortex formation and vortex
shedding have been found for �=45◦ from Figure 14. However, in this case, the flow in the first
and second half periods becomes not symmetric any more. The result at �=30◦ (see Figure 13)
in which one side of cylinder is parallel to the direction of stream and another side faces the flow
stream reveals that two vortices are also generated at the rear-end corners, as those in the cases of
�=45◦, 60◦.

For the cases of Reynolds number equal to 150, the same mechanism and features of vortex
shedding can be found from the right plots of Figures 11–15 as those of lower Re with equal
incidence angle. It should be noted that for �=30◦ (Re=150), as shown in the right plots of
Figure 13, the separation occurs at the leading edge with reattachment on the top face of the
cylinder, which is different from the case of Re=100. Such phenomena are not found when
incidence angle is larger than 30◦ for Re=150.

5.3.2. Force coefficients and Strouhal number. Figure 16 shows the time-dependent histories of the
Drag and Lift coefficients on the surface of the cylinder for different incidence angles at Re=100.
They all demonstrate clear periodicity, which implies again the periodic vortex shedding behind
the cylinder. However, when the cylinder is inclined at some angle (i.e. 0◦<�<60◦), the oscillation
manner of Drag coefficient around its mean value is different from those in the non-inclined cases
(�=0◦,60◦). For further illustration, we show the result for spectral analysis on the signals at
�=0◦, 30◦, 52.5◦ and 60◦ in Figure 17. We can observe that in the inclined cases (�=30◦,52.5◦),
the oscillation of Drag coefficient has two frequency components, i.e. for �=30◦, the dominating
primary frequency fs=0.174 and the secondary frequency fs=0.348; for �=52.5◦, the primary
frequency fs=0.194 and the secondary frequency fs=0.388. Clearly, the secondary frequency is
twice as that of the primary frequency, while the Lift coefficient signal of oscillating frequencies
for �=30◦ and 52.5◦ are 0.174 and 0.194, respectively, which are equal to the corresponding
primary frequencies of Drag signals. At �=0◦, 60◦ a single dominant frequency of Drag coefficient
has been seen to be twice as that of the Lift coefficient. When incidence is equal to 60◦, the
same behavior is also observed in the simulations by De and Dalal [47]. Variation of Strouhal
number with incidence angle has been shown in Figure 18(a). At Re=100, the frequency of vortex
shedding increases with incidence angle in the range of 0◦���60◦. The increase in incidence
angle at around �=30◦ causes the curve to increase at a quicker rate and reaches its flat maximum
at �=60◦, while its minimum value happens at �=0◦. However, at Re=150, the Strouhal number
has a maximum at �=45◦ and decreases slightly for higher incidence angle (45◦<�<60◦). The
influences of incidence on mean value of Drag coefficient (C̄D) and rms value of Lift coefficient
(CLrms) at Re=100 and 150 are depicted in Figure 18(b). It can be seen from Figure 18(b) that, in
the range of 0◦���30◦, C̄D decreases from the maximum value, which happens at �=0◦, with
increasing � until its minimum value is reached at �=30◦. After this minimum is achieved, the
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Figure 16. Time histories of Drag and Lift coefficients of flow past a triangular cylinder with different
incidence angles at Re=100: (a) �=0◦; (b) �=7.5◦; (c) �=15◦; (d) �=22.5◦; (e) �=30◦; (f ) �=37.5◦;

(g) �=45◦; (h) �=52.5◦; and (i) �=60◦.

value of C̄D goes slightly up with �. The contrary behavior is observed for the influence of �
on CLrms. CLrms reaches its maximum value at �=30◦, and then falls off with the increase in �
and finally reaches the minimum at �=60◦.

6. CONCLUSIONS

In this paper, a two-step TCBG algorithm is developed, which is based on the introduction of
two-step second-order Taylor series expansion along the characteristic of the momentum equation.
The calculation of pressure is separated from that of the velocity, by solving the Poisson equation
for pressure, which is derived from the Crank–Nicolson scheme of the momentum equation.
Consequently, the splitting error is circumvented, which will occur in the classical CBS method.
The tests on some benchmark examples have demonstrated the effectiveness of the proposed
method for the solution of incompressible flow and showed its more numerical accuracy with less
numerical dissipative character.
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Figure 17. Fundamental frequency of Lift and Drag coefficients (shown in the inset) signals at different
incident angles (Re=100): (a) �=0◦; (b) �=30◦; (c) �=52.5◦; and (d) �=60◦.

The developed algorithm is employed to simulate unconfined flow around triangular cylinder
with different incidence angles at low Reynolds numbers. The visualization of numerical solu-
tion is realized by the instantaneous streamlines. It shows that incidence angle has significant
effect on the flow patterns around the triangular cylinder. The influence of incidence on some
flow parameters such as Strouhal number, mean value of Drag coefficient and rms value of Lift
coefficient is studied quantitatively. The results show that for the considered Reynolds number, the
Strouhal number increases generally with the increase in incidence angle; the mean value of Drag
coefficient and the rms value of Lift coefficient reach respectively its minimum and maximum at
the incidence of 30◦; in this case, one of the sides of triangular cylinder is parallel to the free
stream.

Through the analysis on the signals of Drag coefficient, we can also conclude that if the triangular
cylinder is located non-symmetrically to the free stream, the oscillation of Drag coefficient has two
frequency components, and its primary frequency is half of the secondary frequency and is equal
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Figure 18. (a) Incidence angle (degree) versus Strouhal number and (b) incidence angle (degree) versus
mean value of Drag coefficient and rms value of Lift coefficient at Re=100, 150.

to the frequency of Lift coefficient, while only single frequency dominates the Drag oscillation
for flow past symmetrically located cylinder.
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